Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nanobiotechnology ; 20(1): 341, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35858906

RESUMO

BACKGROUND: Nowadays, nanoparticles (NPs) have evolved as multifunctional systems combining different custom anchorages which opens a wide range of applications in biomedical research. Thus, their pharmacological involvements require more comprehensive analysis and novel nanodrugs should be characterized by both chemically and biological point of view. Within the wide variety of biocompatible nanosystems, iron oxide nanoparticles (IONPs) present mostly of the required features which make them suitable for multifunctional NPs with many biopharmaceutical applications. RESULTS: Cisplatin-IONPs and different functionalization stages have been broadly evaluated. The potential application of these nanodrugs in onco-therapies has been assessed by studying in vitro biocompatibility (interactions with environment) by proteomics characterization the determination of protein corona in different proximal fluids (human plasma, rabbit plasma and fetal bovine serum),. Moreover, protein labeling and LC-MS/MS analysis provided more than 4000 proteins de novo synthetized as consequence of the nanodrugs presence defending cell signaling in different tumor cell types (data available via ProteomeXchanges with identified PXD026615). Further in vivo studies have provided a more integrative view of the biopharmaceutical perspectives of IONPs. CONCLUSIONS: Pharmacological proteomic profile different behavior between species and different affinity of protein coating layers (soft and hard corona). Also, intracellular signaling exposed differences between tumor cell lines studied. First approaches in animal model reveal the potential of theses NPs as drug delivery vehicles and confirm cisplatin compounds as strengthened antitumoral agents.


Assuntos
Produtos Biológicos , Nanopartículas , Animais , Cromatografia Líquida , Cisplatino/farmacologia , Humanos , Modelos Animais , Nanopartículas/química , Proteômica , Coelhos , Soroalbumina Bovina , Espectrometria de Massas em Tandem
2.
Am J Physiol Renal Physiol ; 285(4): F799-810, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12812916

RESUMO

Renal reabsorption is the main mechanism that controls mannose homeostasis. This takes place through a specific Na-coupled uphill transport system, the molecular identity of which is unknown. We prepared and screened a size-selected rat kidney cortex cDNA library through the expression of mannose transport in Xenopus laevis oocytes. We have identified a membrane protein that induces high-affinity and specific Na-dependent transport of d-mannose and d-glucose in X. laevis oocytes, most likely through stimulation of the capacity of an endogenous transport system of the oocyte. Sequencing has revealed that the cDNA encodes the counterpart of the human membrane-associated protein MAP17, previously known by its overexpression in renal, colon, lung, and breast carcinomas. We show that MAP17 is a 12.2-kDa nonglycosylated membrane protein that locates to the brush-border plasma membrane and the Golgi apparatus of transfected cells and that it is expressed in the proximal tubules of the kidney cortex and in the spermatids of the seminiferous tubules. It spans twice the cell membrane, with both termini inside the cell, and seems to form homodimers through intracellular Cys55, a residue also involved in transport expression. MAP17 is responsible for mannose transport expression in oocytes by rat kidney cortex mRNA. The induced transport has the functional characteristics of a Na-glucose cotransporter (SGLT), because d-glucose and alpha-methyl-d-glucopyranoside are also accepted substrates that are inhibited by phloridzin. The corresponding transporter from the proximal tubule remains to be identified, but it is different from the known mammalian SGLT-1, -2, and -3.


Assuntos
Rim/metabolismo , Manose/metabolismo , Proteínas de Membrana/farmacologia , Proteínas de Transporte de Monossacarídeos/metabolismo , Sódio/metabolismo , Sequência de Aminoácidos/genética , Animais , Sequência de Bases/genética , Transporte Biológico , Linhagem Celular , Feminino , Complexo de Golgi/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Microvilosidades/metabolismo , Dados de Sequência Molecular , Proteínas de Neoplasias , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Gambás , Estrutura Secundária de Proteína , Ratos , Distribuição Tecidual , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...